{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Layout.Tree -- Copyright : (c) 2011 Brent Yorgey -- License : BSD-style (see LICENSE) -- Maintainer : byorgey@cis.upenn.edu -- -- A collection of methods for laying out various kinds of trees. -- This module is still experimental, and more layout methods will -- probably be added over time. -- -- Laying out a rose tree using a symmetric layout: -- -- > import Data.Tree -- > import Diagrams.TwoD.Layout.Tree -- > -- > t1 = Node 'A' [Node 'B' (map lf "CDE"), Node 'F' [Node 'G' (map lf "HIJKLM"), Node 'N' (map lf "OPQR")]] -- > where lf x = Node x [] -- > -- > exampleSymmTree = -- > renderTree ((<> circle 1 # fc white) . text . (:[])) -- > (~~) -- > (symmLayout' (with & slHSep .~ 4 & slVSep .~ 4) t1) -- > # centerXY # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Layout_Tree_exampleSymmTree.svg#diagram=exampleSymmTree&width=300>> -- -- Laying out a rose tree of diagrams, with spacing automatically -- adjusted for the size of the diagrams: -- -- > import Data.Tree -- > import Data.Maybe (fromMaybe) -- > import Diagrams.TwoD.Layout.Tree -- > -- > tD = Node (rect 1 3) -- > [ Node (circle 0.2) [] -- > , Node (hcat . replicate 3 $ circle 1) [] -- > , Node (eqTriangle 5) [] -- > ] -- > -- > exampleSymmTreeWithDs = -- > renderTree id (~~) -- > (symmLayout' (with & slWidth .~ fromMaybe (0,0) . extentX -- > & slHeight .~ fromMaybe (0,0) . extentY) -- > tD) -- > # centerXY # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Layout_Tree_exampleSymmTreeWithDs.svg#diagram=exampleSymmTreeWithDs&width=300>> -- -- Using a variant symmetric layout algorithm specifically for binary trees: -- -- > import Diagrams.TwoD.Layout.Tree -- > import Diagrams.Prelude hiding (Empty) -- > -- > drawT = maybe mempty (renderTree (const (circle 0.05 # fc black)) (~~)) -- > . symmLayoutBin' (with & slVSep .~ 0.5) -- > -- > tree500 = drawT t # centerXY # pad 1.1 -- > where t = genTree 500 0.05 -- > -- genTree 500 0.05 randomly generates trees of size 500 +/- 5%, -- > -- definition not shown -- -- <<diagrams/src_Diagrams_TwoD_Layout_Tree_tree500.svg#diagram=tree500&width=400>> -- -- Using force-based layout on a binary tree: -- -- > {-# LANGUAGE NoMonomorphismRestriction #-} -- > import Diagrams.Prelude hiding (Empty) -- > import Diagrams.TwoD.Layout.Tree -- > -- > gent 0 = Empty -- > gent n = BNode n (gent (n-1)) (gent (n-1)) -- > -- > Just t' = uniqueXLayout 1 1 (gent 4) -- > -- > fblEx = renderTree (\n -> (text (show n) # fontSizeL 0.5 -- > <> circle 0.3 # fc white)) -- > (~~) -- > (forceLayoutTree t') -- > # centerXY # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Layout_Tree_fblEx.svg#diagram=fblEx&width=300>> -- -- Using a radial layout: -- -- > import Diagrams.Prelude -- > import Diagrams.TwoD.Layout.Tree -- > import Data.Tree -- > -- > t = Node 'A' [Node 'B' (map lf "CDE"), Node 'F' [Node 'G' (map lf "HIJKLM"), Node 'N' (map lf "OPQRS")], Node 'T' (map lf "UVWXYZ")] -- > where lf x = Node x [] -- > -- > radialEx = -- > renderTree (\n -> (text (show n) # fontSizeG 0.5 -- > <> circle 0.5 # fc white)) -- > (~~) (radialLayout t) -- > # centerXY # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Layout_Tree_radialEx.svg#diagram=radialEx&width=300>> module Diagrams.TwoD.Layout.Tree ( -- * Binary trees -- $BTree BTree(..) , leaf -- * Layout algorithms -- ** Unique-x layout , uniqueXLayout -- ** Radial layout , radialLayout -- ** Symmetric layout -- $symmetric , symmLayout , symmLayout' , symmLayoutBin , symmLayoutBin' , SymmLayoutOpts(..), slHSep, slVSep, slWidth, slHeight -- ** Force-directed layout -- $forcedirected , forceLayoutTree , forceLayoutTree' , ForceLayoutTreeOpts(..), forceLayoutOpts, edgeLen, springK, staticK , treeToEnsemble , label , reconstruct -- * Rendering , renderTree , renderTree' ) where import Physics.ForceLayout import Control.Arrow (first, second, (&&&), (***)) import Control.Monad.State import Data.Default import qualified Data.Foldable as F import Data.Function (on) import Data.List (mapAccumL) import qualified Data.Map as M import Data.Maybe import qualified Data.Traversable as T import Data.Tree import Control.Lens (makeLenses, view, (+=), (-=), (^.)) import Data.Semigroup import Diagrams import Linear ((*^)) import Linear.Affine #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif ------------------------------------------------------------ -- Binary trees ------------------------------------------------------------ -- $BTree -- There is a standard type of rose trees ('Tree') defined in the -- @containers@ package, but there is no standard type for binary -- trees, so we define one here. Note, if you want to draw binary -- trees with data of type @a@ at the leaves, you can use something -- like @BTree (Maybe a)@ with @Nothing@ at internal nodes; -- 'renderTree' lets you specify how to draw each node. -- | Binary trees with data at internal nodes. data BTree a = Empty | BNode a (BTree a) (BTree a) deriving (Eq, Ord, Read, Show, Functor, F.Foldable, T.Traversable) -- | Convenient constructor for leaves. leaf :: a -> BTree a leaf a = BNode a Empty Empty ------------------------------------------------------------ -- Layout algorithms ------------------------------------------------------------ -------------------------------------------------- -- Unique X layout for binary trees. No -- two nodes share the same X coordinate. data Pos = Pos { _level :: Int , _horiz :: Int } deriving (Eq, Show) makeLenses ''Pos pos2Point :: Num n => n -> n -> Pos -> P2 n pos2Point cSep lSep (Pos l h) = p2 (fromIntegral h * cSep, -fromIntegral l * lSep) -- | @uniqueXLayout xSep ySep t@ lays out the binary tree @t@ using a -- simple recursive algorithm with the following properties: -- -- * Every left subtree is completely to the left of its parent, and -- similarly for right subtrees. -- -- * All the nodes at a given depth in the tree have the same -- y-coordinate. The separation distance between levels is given by -- @ySep@. -- -- * Every node has a unique x-coordinate. The separation between -- successive nodes from left to right is given by @xSep@. uniqueXLayout :: Num n => n -> n -> BTree a -> Maybe (Tree (a, P2 n)) uniqueXLayout cSep lSep t = (fmap . fmap . second) (pos2Point cSep lSep) $ evalState (uniqueXLayout' t) (Pos 0 0) where uniqueXLayout' Empty = return Nothing uniqueXLayout' (BNode a l r) = do down l' <- uniqueXLayout' l up p <- mkNode down r' <- uniqueXLayout' r up return $ Just (Node (a,p) (catMaybes [l', r'])) mkNode = get <* (horiz += 1) down = level += 1 up = level -= 1 -------------------------------------------------- -- "Symmetric" layout of rose trees. -- $symmetric -- \"Symmetric\" layout of rose trees, based on the algorithm described in: -- -- Andrew J. Kennedy. /Drawing Trees/, J Func. Prog. 6 (3): 527-534, -- May 1996. -- -- Trees laid out using this algorithm satisfy: -- -- 1. Nodes at a given level are always separated by at least a -- given minimum distance. -- -- 2. Parent nodes are centered with respect to their immediate -- offspring (though /not/ necessarily with respect to the entire -- subtrees under them). -- -- 3. Layout commutes with mirroring: that is, the layout of a given -- tree is the mirror image of the layout of the tree's mirror -- image. Put another way, there is no inherent left or right bias. -- -- 4. Identical subtrees are always rendered identically. Put -- another way, the layout of any subtree is independent of the rest -- of the tree. -- -- 5. The layouts are as narrow as possible while satisfying all the -- above constraints. -- | A tree with /relative/ positioning information. The @n@ -- at each node is the horizontal /offset/ from its parent. type Rel t n a = t (a, n) -- | Shift a RelTree horizontally. moveTree :: Num n => n -> Rel Tree n a -> Rel Tree n a moveTree x' (Node (a, x) ts) = Node (a, x+x') ts -- | An /extent/ is a list of pairs, recording the leftmost and -- rightmost (absolute) horizontal positions of a tree at each -- depth. newtype Extent n = Extent { getExtent :: [(n, n)] } extent :: ([(n, n)] -> [(n, n)]) -> Extent n -> Extent n extent f = Extent . f . getExtent consExtent :: (n, n) -> Extent n -> Extent n consExtent = extent . (:) -- | Shift an extent horizontally. moveExtent :: Num n => n -> Extent n -> Extent n moveExtent x = (extent . map) ((+x) *** (+x)) -- | Reflect an extent about the vertical axis. flipExtent :: Num n => Extent n -> Extent n flipExtent = (extent . map) (\(p,q) -> (-q, -p)) -- | Merge two non-overlapping extents. mergeExtents :: Extent n -> Extent n -> Extent n mergeExtents (Extent e1) (Extent e2) = Extent $ mergeExtents' e1 e2 where mergeExtents' [] qs = qs mergeExtents' ps [] = ps mergeExtents' ((p,_) : ps) ((_,q) : qs) = (p,q) : mergeExtents' ps qs instance Semigroup (Extent n) where (<>) = mergeExtents instance Monoid (Extent n) where mempty = Extent [] mappend = (<>) -- | Determine the amount to shift in order to \"fit\" two extents -- next to one another. The first argument is the separation to -- leave between them. fit :: (Num n, Ord n) => n -> Extent n -> Extent n -> n fit hSep (Extent ps) (Extent qs) = maximum (0 : zipWith (\(_,p) (q,_) -> p - q + hSep) ps qs) -- | Fit a list of subtree extents together using a left-biased -- algorithm. Compute a list of positions (relative to the leftmost -- subtree which is considered to have position 0). fitListL :: (Num n, Ord n) => n -> [Extent n] -> [n] fitListL hSep = snd . mapAccumL fitOne mempty where fitOne acc e = let x = fit hSep acc e in (acc <> moveExtent x e, x) -- | Fit a list of subtree extents together with a right bias. fitListR :: (Num n, Ord n) => n -> [Extent n] -> [n] fitListR hSep = reverse . map negate . fitListL hSep . map flipExtent . reverse -- | Compute a symmetric fitting by averaging the results of left- and -- right-biased fitting. fitList :: (Fractional n, Ord n) => n -> [Extent n] -> [n] fitList hSep = uncurry (zipWith mean) . (fitListL hSep &&& fitListR hSep) where mean x y = (x+y)/2 -- | Options for controlling the symmetric tree layout algorithm. data SymmLayoutOpts n a = SLOpts { _slHSep :: n -- ^ Minimum horizontal -- separation between sibling -- nodes. The default is 1. , _slVSep :: n -- ^ Vertical separation -- between adjacent levels of -- the tree. The default is 1. , _slWidth :: a -> (n, n) -- ^ A function for measuring the horizontal extent (a pair -- of x-coordinates) of an item in the tree. The default -- is @const (0,0)@, that is, the nodes are considered as -- taking up no space, so the centers of the nodes will -- be separated according to the @slHSep@ and @slVSep@. -- However, this can be useful, /e.g./ if you have a tree -- of diagrams of irregular size and want to make sure no -- diagrams overlap. In that case you could use -- @fromMaybe (0,0) . extentX@. , _slHeight :: a -> (n, n) -- ^ A function for measuring the vertical extent of an -- item in the tree. The default is @const (0,0)@. See -- the documentation for 'slWidth' for more information. } makeLenses ''SymmLayoutOpts instance Num n => Default (SymmLayoutOpts n a) where def = SLOpts { _slHSep = 1 , _slVSep = 1 , _slWidth = const (0,0) , _slHeight = const (0,0) } -- | Actual recursive tree layout algorithm, which returns a tree -- layout as well as an extent. symmLayoutR :: (Fractional n, Ord n) => SymmLayoutOpts n a -> Tree a -> (Rel Tree n a, Extent n) symmLayoutR opts (Node a ts) = (rt, ext) where (trees, extents) = unzip (map (symmLayoutR opts) ts) positions = fitList (opts ^. slHSep) extents pTrees = zipWith moveTree positions trees pExtents = zipWith moveExtent positions extents ext = (opts^.slWidth) a `consExtent` mconcat pExtents rt = Node (a, 0) pTrees -- | Symmetric tree layout algorithm specialized to binary trees. -- Returns a tree layout as well as an extent. symmLayoutBinR :: (Fractional n, Ord n) => SymmLayoutOpts n a -> BTree a -> (Maybe (Rel Tree n a), Extent n) symmLayoutBinR _ Empty = (Nothing, mempty) symmLayoutBinR opts (BNode a l r) = (Just rt, ext) where (l', extL) = symmLayoutBinR opts l (r', extR) = symmLayoutBinR opts r positions = case (l', r') of (Nothing, _) -> [0, opts ^. slHSep / 2] (_, Nothing) -> [-(opts ^. slHSep) / 2, 0] _ -> fitList (opts ^. slHSep) [extL, extR] pTrees = catMaybes $ zipWith (fmap . moveTree) positions [l',r'] pExtents = zipWith moveExtent positions [extL, extR] ext = (opts^.slWidth) a `consExtent` mconcat pExtents rt = Node (a, 0) pTrees -- | Run the symmetric rose tree layout algorithm on a given tree, -- resulting in the same tree annotated with node positions. symmLayout' :: (Fractional n, Ord n) => SymmLayoutOpts n a -> Tree a -> Tree (a, P2 n) symmLayout' opts = unRelativize opts origin . fst . symmLayoutR opts -- | Run the symmetric rose tree layout algorithm on a given tree -- using default options, resulting in the same tree annotated with -- node positions. symmLayout :: (Fractional n, Ord n) => Tree a -> Tree (a, P2 n) symmLayout = symmLayout' def -- | Lay out a binary tree using a slight variant of the symmetric -- layout algorithm. In particular, if a node has only a left child -- but no right child (or vice versa), the child will be offset from -- the parent horizontally by half the horizontal separation -- parameter. Note that the result will be @Nothing@ if and only if -- the input tree is @Empty@. symmLayoutBin' :: (Fractional n, Ord n) => SymmLayoutOpts n a -> BTree a -> Maybe (Tree (a,P2 n)) symmLayoutBin' opts = fmap (unRelativize opts origin) . fst . symmLayoutBinR opts -- | Lay out a binary tree using a slight variant of the symmetric -- layout algorithm, using default options. In particular, if a -- node has only a left child but no right child (or vice versa), -- the child will be offset from the parent horizontally by half the -- horizontal separation parameter. Note that the result will be -- @Nothing@ if and only if the input tree is @Empty@. symmLayoutBin :: (Fractional n, Ord n) => BTree a -> Maybe (Tree (a,P2 n)) symmLayoutBin = symmLayoutBin' def -- | Given a fixed location for the root, turn a tree with -- \"relative\" positioning into one with absolute locations -- associated to all the nodes. unRelativize :: (Num n, Ord n) => SymmLayoutOpts n a -> P2 n -> Rel Tree n a -> Tree (a, P2 n) unRelativize opts curPt (Node (a,hOffs) ts) = Node (a, rootPt) (map (unRelativize opts (rootPt .+^ (vOffs *^ unit_Y))) ts) where rootPt = curPt .+^ (hOffs *^ unitX) vOffs = - fst ((opts^.slHeight) a) + (maximum . map (snd . (opts^.slHeight) . fst . rootLabel) $ ts) + (opts ^. slVSep) -------------------------------------------------- -- Force-directed layout of rose trees -- $forcedirected -- Force-directed layout of rose trees. data ForceLayoutTreeOpts n = FLTOpts { _forceLayoutOpts :: ForceLayoutOpts n -- ^ Options to the force layout simulator, including damping. , _edgeLen :: n -- ^ How long edges should be, ideally. -- This will be the resting length for -- the springs. , _springK :: n -- ^ Spring constant. The -- bigger the constant, -- the more the edges -- push/pull towards their -- resting length. , _staticK :: n -- ^ Coulomb constant. The -- bigger the constant, the -- more sibling nodes repel -- each other. } makeLenses ''ForceLayoutTreeOpts instance Floating n => Default (ForceLayoutTreeOpts n) where def = FLTOpts { _forceLayoutOpts = def , _edgeLen = sqrt 2 , _springK = 0.05 , _staticK = 0.1 } -- | Assign unique ID numbers to the nodes of a tree, and generate an -- 'Ensemble' suitable for simulating in order to do force-directed -- layout of the tree. In particular, -- -- * edges are modeled as springs -- -- * nodes are modeled as point charges -- -- * nodes are constrained to keep the same y-coordinate. -- -- The input to @treeToEnsemble@ could be a tree already laid out by -- some other method, such as 'uniqueXLayout'. treeToEnsemble :: forall a n. Floating n => ForceLayoutTreeOpts n -> Tree (a, P2 n) -> (Tree (a, PID), Ensemble V2 n) treeToEnsemble opts t = ( fmap (first fst) lt , Ensemble [ (edges, \pt1 pt2 -> project unitX (hookeForce (opts ^. springK) (opts ^. edgeLen) pt1 pt2)) , (sibs, \pt1 pt2 -> project unitX (coulombForce (opts ^. staticK) pt1 pt2)) ] particleMap ) where lt :: Tree ((a,P2 n), PID) lt = label t particleMap :: M.Map PID (Particle V2 n) particleMap = M.fromList . map (second initParticle) . F.toList . fmap (swap . first snd) $ lt swap (x,y) = (y,x) edges, sibs :: [Edge] edges = extractEdges (fmap snd lt) sibs = extractSibs [fmap snd lt] extractEdges :: Tree PID -> [Edge] extractEdges (Node i cs) = map (((,) i) . rootLabel) cs ++ concatMap extractEdges cs extractSibs :: Forest PID -> [Edge] extractSibs [] = [] extractSibs ts = (\is -> zip is (tail is)) (map rootLabel ts) ++ extractSibs (concatMap subForest ts) -- sz = ala Sum foldMap . fmap (const 1) $ t -- sibs = [(x,y) | x <- [0..sz-2], y <- [x+1 .. sz-1]] -- | Assign unique IDs to every node in a tree (or other traversable structure). label :: (T.Traversable t) => t a -> t (a, PID) label = flip evalState 0 . T.mapM (\a -> get >>= \i -> modify (+1) >> return (a,i)) -- | Reconstruct a tree (or any traversable structure) from an -- 'Ensemble', given unique identifier annotations matching the -- identifiers used in the 'Ensemble'. reconstruct :: (Functor t, Num n) => Ensemble V2 n -> t (a, PID) -> t (a, P2 n) reconstruct e = (fmap . second) (fromMaybe origin . fmap (view pos) . flip M.lookup (e^.particles)) -- | Force-directed layout of rose trees, with default parameters (for -- more options, see 'forceLayoutTree''). In particular, -- -- * edges are modeled as springs -- -- * nodes are modeled as point charges -- -- * nodes are constrained to keep the same y-coordinate. -- -- The input could be a tree already laid out by some other method, -- such as 'uniqueXLayout'. forceLayoutTree :: (Floating n, Ord n) => Tree (a, P2 n) -> Tree (a, P2 n) forceLayoutTree = forceLayoutTree' def -- | Force-directed layout of rose trees, with configurable parameters. forceLayoutTree' :: (Floating n, Ord n) => ForceLayoutTreeOpts n -> Tree (a, P2 n) -> Tree (a, P2 n) forceLayoutTree' opts t = reconstruct (forceLayout (opts^.forceLayoutOpts) e) ti where (ti, e) = treeToEnsemble opts t -- | Radial layout of rose trees, adapted from Andy Pavlo, -- "Interactive, Tree-Based Graph Visualization", p. 18 -- (<http://www.cs.cmu.edu/~pavlo/static/papers/APavloThesis032006.pdf>) radialLayout :: Tree a -> Tree (a, P2 Double) radialLayout t@(Node a _) = Node (a, origin) (assignPos 0 pi 0 (nodeLeaves info) (weight t) ts) where Node (_,info) ts = decorate t -- | Implementation of radial layout: @assignPos alpha beta theta k w ts@ -- -- * @alpha@, @beta@ define the bounds of an annular wedge around the root -- * @k@ is #leaves of root and lambda is #leaves of vertex -- * @theta@ is ? -- * @w@ is ? -- -- The algorithm used is an extension of Algorithm 1, Page 18 of -- <http://www.cs.cmu.edu/~pavlo/static/papers/APavloThesis032006.pdf>. -- See -- <https://drive.google.com/file/d/0B3el1oMKFsOIVGVRYzJzWGwzWDA/view> -- for more examples. assignPos :: Double -> Double -> Double -> Int -> Double -> [Tree (a, NodeInfo)] -> [Tree (a, P2 Double)] assignPos _ _ _ _ _ [] = [] assignPos alpha beta theta k w (Node (a, info) ts1 : ts2) = Node (a, pt) (assignPos theta u theta lambda w ts1) : assignPos alpha beta u k w ts2 where lambda = nodeLeaves info u = theta + (beta - alpha) * fromIntegral lambda / fromIntegral k pt = (1 ^& 0) # rotate (theta + u @@ rad) # scale (w * fromIntegral (nodeDepth info) / 2) -- | Compute the length of radius determined by the number of children to avoid -- node overlapping weight :: Tree a -> Double weight t = maximum $ map (((\ x -> fromIntegral x / 2) . length) . map rootLabel) (takeWhile (not . null) $ iterate (concatMap subForest) [t]) data NodeInfo = NodeInfo { nodeLeaves :: Int , nodeDepth :: Int } decorate :: Tree a -> Tree (a, NodeInfo) decorate = decorate' 0 decorate' :: Int -> Tree a -> Tree (a, NodeInfo) decorate' d (Node a ts) = Node (a, info) ts' where ts' = map (decorate' (d+1)) ts infos = map (snd . rootLabel) ts' leaves | null ts = 1 | otherwise = sum . map nodeLeaves $ infos info = NodeInfo leaves d ------------------------------------------------------------ -- Rendering ------------------------------------------------------------ -- | Draw a tree annotated with node positions, given functions -- specifying how to draw nodes and edges. renderTree :: (Monoid' m, Floating n, Ord n) => (a -> QDiagram b V2 n m) -> (P2 n -> P2 n -> QDiagram b V2 n m) -> Tree (a, P2 n) -> QDiagram b V2 n m renderTree n e = renderTree' n (e `on` snd) -- | Draw a tree annotated with node positions, given functions -- specifying how to draw nodes and edges. Unlike 'renderTree', -- this version gives the edge-drawing function access to the actual -- values stored at the nodes rather than just their positions. renderTree' :: (Monoid' m, Floating n, Ord n) => (a -> QDiagram b V2 n m) -> ((a,P2 n) -> (a,P2 n) -> QDiagram b V2 n m) -> Tree (a, P2 n) -> QDiagram b V2 n m renderTree' renderNode renderEdge = alignT . centerX . renderTreeR where renderTreeR (Node (a,p) cs) = renderNode a # moveTo p <> mconcat (map renderTreeR cs) <> mconcat (map (renderEdge (a,p) . rootLabel) cs) -- > -- Critical size-limited Boltzmann generator for binary trees (used in example) -- > -- > import Control.Applicative -- > import Control.Lens hiding (( # ), Empty) -- > import Control.Monad.Random -- > import Control.Monad.Reader -- > import Control.Monad.State -- > import Control.Monad.Trans.Maybe -- > -- > genTreeCrit :: ReaderT Int (StateT Int (MaybeT (Rand StdGen))) (BTree ()) -- > genTreeCrit = do -- > r <- getRandom -- > if r <= (1/2 :: Double) -- > then return Empty -- > else atom >> (BNode () <$> genTreeCrit <*> genTreeCrit) -- > -- > atom :: ReaderT Int (StateT Int (MaybeT (Rand StdGen))) () -- > atom = do -- > targetSize <- ask -- > curSize <- get -- > when (curSize >= targetSize) mzero -- > put (curSize + 1) -- > -- > genOneTree :: Int -> Int -> Double -> Maybe (BTree ()) -- > genOneTree seed size eps = -- > case mt of -- > Nothing -> Nothing -- > Just (t,sz) -> if sz >= minSz then Just t else Nothing -- > -- > where -- > g = mkStdGen seed -- > sizeWiggle = floor $ fromIntegral size * eps -- > maxSz = size + sizeWiggle -- > minSz = size - sizeWiggle -- > mt = (evalRand ?? g) . runMaybeT . (runStateT ?? 0) . (runReaderT ?? maxSz) -- > $ genTreeCrit -- > -- > genTree' :: Int -> Int -> Double -> BTree () -- > genTree' seed size eps = -- > case (genOneTree seed size eps) of -- > Nothing -> genTree' (seed+1) size eps -- > Just t -> t -- > -- > genTree :: Int -> Double -> BTree () -- > genTree = genTree' 0