{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Sunburst -- Copyright : (c) 2013-14 Jeffrey Rosenbluth -- License : BSD-style (see LICENSE) -- Maintainer : jeffrey.rosenbluth@gmail.com -- -- Generation of Sunburst Partitions. A radial view of a Treemap. -- -- The partitions are created without examining the contents of the tree nodes -- which allows us to create a sunburst for any @Tree a@. As a consequence we cannot -- base the size or color of the sections on the data in the tree, but only -- on depth and number of children. Of course the code could easily be adapted -- to handle more specific tree data. -- -- See John Stasko, Richard Catrambone, \"An evaluation of space-filling -- information visualizations for depicting hierarchical structures\", 2000. -- <http://www.cc.gatech.edu/~john.stasko/papers/ijhcs00.pdf>. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Sunburst ( -- * Sunburst sunburst' , sunburst , SunburstOpts(..) , radius , sectionWidth , colors ) where import Data.Default.Class import qualified Data.Foldable as F import Data.Tree import Diagrams.Prelude hiding (radius) data SunburstOpts n = SunburstOpts { _radius :: n -- ^ Relative size of the root circle, usually 1. , _sectionWidth :: n -- ^ Relative width of the sections. , _colors :: [Colour Double]} -- ^ Color list one for each ring. instance Fractional n => Default (SunburstOpts n) where def = SunburstOpts { _radius = 1.0 , _sectionWidth = 0.3 , _colors = [ lightcoral, lightseagreen, paleturquoise , lightsteelblue, plum, violet, coral, honeydew]} makeLenses ''SunburstOpts -- Section data: Will be stored in nodes of a new rose tree and used to -- make each section of the sunburst partition. data SData n = SData n-- section radius n-- section width (Direction V2 n) -- start direction (Angle n) -- sweep angle Int -- number of sections (Colour Double) -- color -- Make n sections (annular wedges) starting in direction d and sweeping a sections :: (Renderable (Path V2 n) b, TypeableFloat n) => SData n -> QDiagram b V2 n Any sections (SData r s d a n c) = mconcat $ iterateN n (rotate theta) w where theta = a ^/ fromIntegral n w = annularWedge (s + r) r d theta # lc white # lwG 0.008 # fc c -- Convert an arbitrary @Tree a@ to a @Tree SData@ storing the sections info -- in the nodes. If color list is shorter than depth of tree than the first -- color of the list is repeated. If the color list is empty, lightgray is used. toTree :: Floating n => SunburstOpts n -> Tree a -> Direction V2 n -> Angle n -> Tree (SData n) toTree (SunburstOpts r s []) x q1 q2 = toTree (SunburstOpts r s (repeat lightgray)) x q1 q2 toTree (SunburstOpts r s (c:cs)) (Node _ ts) d a = Node (SData r s d a n c) ts' where n = length ts dt = a ^/ fromIntegral n qs = [rotate (fromIntegral i *^ dt ) d | i <- [0..n]] fs = toTree (SunburstOpts(r + s) s (cs ++ [c])) ts' = zipWith3 fs ts (take (n-1) qs) (repeat dt) -- | Take any @Tree a@ and @SunburstOpts@ and make a sunburst partition. -- Basically a treemap with a radial layout. -- The root is the center of the sunburst and its circumference is divided -- evenly according to the number of child nodes it has. Then each of those -- sections is treated the same way. sunburst' :: (Renderable (Path V2 n) b, TypeableFloat n) => SunburstOpts n -> Tree a -> QDiagram b V2 n Any sunburst' opts t = sunB $ toTree opts t xDir fullTurn where sunB (Node sd ts') = sections sd <> F.foldMap sunB ts' -- | @sunburst@ with default opts -- -- > import Diagrams.TwoD.Sunburst -- > import Data.Tree (unfoldTree) -- > aTree = unfoldTree (\n -> (0, replicate n (n-1))) 6 -- > sunburstEx = sunburst aTree # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Sunburst_sunburstEx.svg#diagram=sunburstEx&width=500>> sunburst :: (Renderable (Path V2 n) b, TypeableFloat n) => Tree a -> QDiagram b V2 n Any sunburst = sunburst' def