module Diagrams.ThreeD.Shapes
(
Skinned(..)
, Ellipsoid(..)
, sphere
, Box(..)
, cube
, Frustum(..)
, frustum
, cone
, cylinder
, CSG(..)
, union
, intersection
, difference
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
import Data.Foldable (foldMap)
#endif
import Control.Lens (review, (^.), _1)
import Data.Typeable
import Data.Semigroup
import Diagrams.Angle
import Diagrams.Core
import Diagrams.Core.Trace
import Diagrams.Points
import Diagrams.Query
import Diagrams.Solve.Polynomial
import Diagrams.ThreeD.Types
import Diagrams.ThreeD.Vector
import Linear.Affine
import Linear.Metric
import Linear.Vector
data Ellipsoid n = Ellipsoid (Transformation V3 n)
deriving Typeable
type instance V (Ellipsoid n) = V3
type instance N (Ellipsoid n) = n
instance Fractional n => Transformable (Ellipsoid n) where
transform t1 (Ellipsoid t2) = Ellipsoid (t1 <> t2)
instance Fractional n => Renderable (Ellipsoid n) NullBackend where
render _ _ = mempty
instance OrderedField n => Enveloped (Ellipsoid n) where
getEnvelope (Ellipsoid tr) = transform tr . mkEnvelope $ \v -> 1 / norm v
instance OrderedField n => Traced (Ellipsoid n) where
getTrace (Ellipsoid tr) = transform tr . mkTrace $ \(P p) v -> let
a = v `dot` v
b = 2 * (p `dot` v)
c = (p `dot` p) 1
in
mkSortedList $ quadForm a b c
sphere :: Num n => Ellipsoid n
sphere = Ellipsoid mempty
data Box n = Box (Transformation V3 n)
deriving Typeable
type instance V (Box n) = V3
type instance N (Box n) = n
instance Fractional n => Transformable (Box n) where
transform t1 (Box t2) = Box (t1 <> t2)
instance Fractional n => Renderable (Box n) NullBackend where
render _ _ = mempty
instance OrderedField n => Enveloped (Box n) where
getEnvelope (Box tr) = transform tr . mkEnvelope $ \v ->
maximum (map (v `dot`) corners) / quadrance v where
corners = mkR3 <$> [0,1] <*> [0,1] <*> [0,1]
instance (Fractional n, Ord n) => Traced (Box n) where
getTrace (Box tr) = transform tr . mkTrace $ \p v -> let
(x0, y0, z0) = unp3 p
(vx, vy, vz) = unr3 v
intersections f d = case d of
0 -> []
_ -> [f/d, (1f)/d]
ts = concat $ zipWith intersections [x0,y0,z0] [vx,vy,vz]
atT t = p .+^ (t*^v)
range u = and [x >= 0, x <= 1, y >= 0, y <= 1, z >= 0, z <= 1] where
(x, y, z) = unp3 u
in
mkSortedList . filter (range . atT) $ ts where
cube :: Num n => Box n
cube = Box mempty
data Frustum n = Frustum n n (Transformation V3 n)
deriving Typeable
type instance V (Frustum n) = V3
type instance N (Frustum n) = n
instance Fractional n => Transformable (Frustum n) where
transform t1 (Frustum r0 r1 t2) = Frustum r0 r1 (t1 <> t2)
instance Fractional n => Renderable (Frustum n) NullBackend where
render _ _ = mempty
instance (OrderedField n, RealFloat n) => Enveloped (Frustum n) where
getEnvelope (Frustum r0 r1 tr) = transform tr . mkEnvelope $ \v ->let
θ = v ^. _theta
corners = [(r1,θ,1), (r1,θ,1), (r0,θ,0), (r0,θ,0)]
in
maximum . map (norm . project v . review r3CylindricalIso) $ corners
instance (RealFloat n, Ord n) => Traced (Frustum n) where
getTrace (Frustum r0 r1 tr) = transform tr . mkTrace $ \p v -> let
(px, py, pz) = unp3 p
(vx, vy, vz) = unr3 v
ray t = p .+^ t *^ v
dr = r1 r0
a = vx**2 + vy**2 vz**2 * dr**2
b = 2 * (px * vx + py * vy (r0+pz*dr) * dr * vz)
c = px**2 + py**2 (r0 + dr*pz)**2
zbounds t = ray t ^. _z >= 0
&& ray t ^. _z <= 1
ends = concatMap cap [0,1]
cap z = [ t | ray t ^. lensP . r3CylindricalIso . _1 < r0 + z * dr ]
where
t = (z pz) / vz
in
mkSortedList $ filter zbounds (quadForm a b c) ++ ends
frustum :: Num n => n -> n -> Frustum n
frustum r0 r1 = Frustum r0 r1 mempty
cone :: Num n => Frustum n
cone = frustum 1 0
cylinder :: Num n => Frustum n
cylinder = frustum 1 1
class Skinned t where
skin :: (Renderable t b, N t ~ n, TypeableFloat n) => t -> QDiagram b V3 n Any
instance (Num n, Ord n) => HasQuery (Ellipsoid n) Any where
getQuery (Ellipsoid tr) = transform tr $
Query $ \v -> Any $ quadrance (v .-. origin) <= 1
instance OrderedField n => Skinned (Ellipsoid n) where
skin s = mkQD (Prim s) (getEnvelope s) (getTrace s) mempty (getQuery s)
instance (Num n, Ord n) => HasQuery (Box n) Any where
getQuery (Box tr) = transform tr . Query $ Any . range where
range u = and [x >= 0, x <= 1, y >= 0, y <= 1, z >= 0, z <= 1] where
(x, y, z) = unp3 u
instance OrderedField n => Skinned (Box n) where
skin s = mkQD (Prim s) (getEnvelope s) (getTrace s) mempty (getQuery s)
instance (OrderedField n) => HasQuery (Frustum n) Any where
getQuery (Frustum r0 r1 tr)= transform tr $
Query $ \p -> let
z = p^._z
r = r0 + (r1 r0)*z
v = p .-. origin
a = norm $ projectXY v
projectXY u = u ^-^ project unitZ u
in
Any $ z >= 0 && z <= 1 && a <= r
instance Skinned (Frustum n) where
skin s = mkQD (Prim s) (getEnvelope s) (getTrace s) mempty (getQuery s)
data CSG n
= CsgEllipsoid (Ellipsoid n)
| CsgBox (Box n)
| CsgFrustum (Frustum n)
| CsgUnion [CSG n]
| CsgIntersection [CSG n]
| CsgDifference (CSG n) (CSG n)
deriving Typeable
type instance V (CSG n) = V3
type instance N (CSG n) = n
instance Fractional n => Transformable (CSG n) where
transform t (CsgEllipsoid p) = CsgEllipsoid $ transform t p
transform t (CsgBox p) = CsgBox $ transform t p
transform t (CsgFrustum p) = CsgFrustum $ transform t p
transform t (CsgUnion ps) = CsgUnion $ map (transform t) ps
transform t (CsgIntersection ps) = CsgIntersection $ map (transform t) ps
transform t (CsgDifference p1 p2) = CsgDifference (transform t p1) (transform t p2)
instance RealFloat n => Enveloped (CSG n) where
getEnvelope (CsgEllipsoid p) = getEnvelope p
getEnvelope (CsgBox p) = getEnvelope p
getEnvelope (CsgFrustum p) = getEnvelope p
getEnvelope (CsgUnion ps) = foldMap getEnvelope ps
getEnvelope (CsgIntersection ps) = foldMap getEnvelope ps
getEnvelope (CsgDifference p1 p2) = getEnvelope p1 <> getEnvelope p2
instance (Floating n, Ord n) => HasQuery (CSG n) Any where
getQuery (CsgEllipsoid prim) = getQuery prim
getQuery (CsgBox prim) = getQuery prim
getQuery (CsgFrustum prim) = getQuery prim
getQuery (CsgUnion ps) = foldMap getQuery ps
getQuery (CsgIntersection ps) =
Any . getAll <$> foldMap (fmap (All . getAny) . getQuery) ps
getQuery (CsgDifference p1 p2) = inOut <$> getQuery p1 <*> getQuery p2 where
inOut (Any a) (Any b) = Any $ a && not b
instance (RealFloat n, Ord n) => Traced (CSG n) where
getTrace (CsgEllipsoid p) = getTrace p
getTrace (CsgBox p) = getTrace p
getTrace (CsgFrustum p) = getTrace p
getTrace (CsgUnion []) = mempty
getTrace (CsgUnion (s:ss)) = mkTrace t where
t pt v = onSortedList (filter $ without s) (appTrace (getTrace (CsgUnion ss)) pt v)
<> onSortedList (filter $ without (CsgUnion ss)) (appTrace (getTrace s) pt v) where
newPt dist = pt .+^ v ^* dist
without prim = not . inquire prim . newPt
getTrace (CsgIntersection []) = mempty
getTrace (CsgIntersection (s:ss)) = mkTrace t where
t pt v = onSortedList (filter $ within s) (appTrace (getTrace (CsgIntersection ss)) pt v)
<> onSortedList (filter $ within (CsgIntersection ss)) (appTrace (getTrace s) pt v) where
newPt dist = pt .+^ v ^* dist
within prim = inquire prim . newPt
getTrace (CsgDifference s1 s2) = mkTrace t where
t pt v = onSortedList (filter $ not . within s2) (appTrace (getTrace s1) pt v)
<> onSortedList (filter $ within s1) (appTrace (getTrace s2) pt v) where
newPt dist = pt .+^ v ^* dist
within prim = inquire prim . newPt
instance (RealFloat n, Ord n) => Skinned (CSG n) where
skin s = mkQD (Prim s) (getEnvelope s) (getTrace s) mempty (getQuery s)
class CsgPrim a where
toCsg :: a n -> CSG n
instance CsgPrim Ellipsoid where
toCsg = CsgEllipsoid
instance CsgPrim Box where
toCsg = CsgBox
instance CsgPrim Frustum where
toCsg = CsgFrustum
instance CsgPrim CSG where
toCsg = id
union :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
union a b = CsgUnion [toCsg a, toCsg b]
intersection :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
intersection a b = CsgIntersection [toCsg a, toCsg b]
difference :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
difference a b = CsgDifference (toCsg a) (toCsg b)