module Diagrams.TwoD.Segment
(
intersectPointsS
, intersectPointsS'
, closestPoint
, closestPoint'
, closestDistance
, closestDistance'
, closestParam
, closestParam'
, segmentSegment
, lineSegment
)
where
import Control.Lens hiding (at, contains, transform, ( # ))
import Data.Maybe
import Diagrams.Core
import Diagrams.Direction
import Diagrams.Located
import Diagrams.Parametric
import Diagrams.Segment
import Diagrams.TwoD.Points
import Diagrams.TwoD.Segment.Bernstein
import Diagrams.TwoD.Transform
import Diagrams.TwoD.Types hiding (p2)
import Diagrams.TwoD.Vector
import Linear.Affine
import Linear.Metric
instance OrderedField n => Traced (Segment Closed V2 n) where
getTrace = getTrace . mkFixedSeg . (`at` origin)
instance OrderedField n => Traced (FixedSegment V2 n) where
getTrace seg = mkTrace $ \p v ->
mkSortedList . map (view _1) $ lineSegment defEps (v `at` p) seg
defEps :: Fractional n => n
defEps = 1e-8
intersectPointsS :: OrderedField n => FixedSegment V2 n -> FixedSegment V2 n -> [P2 n]
intersectPointsS = intersectPointsS' defEps
intersectPointsS' :: OrderedField n => n -> FixedSegment V2 n -> FixedSegment V2 n -> [P2 n]
intersectPointsS' eps s1 s2 = map (view _3) $ segmentSegment eps s1 s2
closestDistance :: OrderedField n => FixedSegment V2 n -> P2 n -> [n]
closestDistance = closestDistance' defEps
closestDistance' :: OrderedField n => n -> FixedSegment V2 n -> P2 n -> [n]
closestDistance' eps seg p = map (distanceA p) $ closestPoint' eps seg p
closestPoint :: OrderedField n => FixedSegment V2 n -> P2 n -> [P2 n]
closestPoint = closestPoint' defEps
closestPoint' :: OrderedField n => n -> FixedSegment V2 n -> P2 n -> [P2 n]
closestPoint' eps seg = map (seg `atParam`) . closestParam' eps seg
closestParam :: OrderedField n => FixedSegment V2 n -> P2 n -> [n]
closestParam = closestParam' defEps
closestParam' :: OrderedField n => n -> FixedSegment V2 n -> P2 n -> [n]
closestParam' _ (FLinear p0 p1) p
| t < 0 = [0]
| t > 1 = [1]
| otherwise = [t]
where
vp = p .-. p0
v = p1 .-. p0
dp = vp `dot` v
t = dp / quadrance v
closestParam' eps cb (P (V2 px py)) = bezierFindRoot eps poly 0 1
where
(bx, by) = bezierToBernstein cb
bx' = bernsteinDeriv bx
by' = bernsteinDeriv by
poly = (bx listToBernstein [px, px, px, px]) * bx'
+ (by listToBernstein [py, py, py, py]) * by'
segmentSegment :: OrderedField n => n -> FixedSegment V2 n -> FixedSegment V2 n -> [(n, n, P2 n)]
segmentSegment eps s1 s2 =
case (s1,s2) of
(FCubic{}, FCubic{}) -> map (\(t1,t2) -> (t1,t2, s1 `atParam` t1))
$ bezierClip eps s1 s2
(FCubic{}, FLinear{}) -> map flip12 $ linearSeg (segLine s2) s1
_ -> linearSeg (segLine s1) s2
where
linearSeg l s = filter (inRange . view _1) $ lineSegment eps l s
flip12 (a,b,c) = (b,a,c)
lineSegment :: OrderedField n => n -> Located (V2 n) -> FixedSegment V2 n -> [(n, n, P2 n)]
lineSegment _ l1 p@(FLinear p0 p1)
= map (\(tl,tp) -> (tl, tp, p `atParam` tp))
. filter (inRange . snd) . maybeToList $ lineLine l1 (mkLine p0 p1)
lineSegment eps (viewLoc -> (p,r)) cb = map addPoint params
where
params = bezierFindRoot eps (listToBernstein $ cb' ^.. each . _y) 0 1
cb' = transform (inv (rotationTo $ dir r)) . moveOriginTo p $ cb
addPoint bt = (lt, bt, intersect)
where
intersect = cb `atParam` bt
lt = (cb' `atParam` bt) ^. _x / norm r
bezierClip :: OrderedField n => n -> FixedSegment V2 n -> FixedSegment V2 n -> [(n, n)]
bezierClip eps p_ q_ = filter (allOf both inRange)
$ go p_ q_ 0 1 0 1 0 False
where
go p q tmin tmax umin umax clip revCurves
| isNothing chopInterval = []
| clip > 0.8 && clip' > 0.8 =
if tmax' tmin' > umax umin
then let (pl, pr) = p' `splitAtParam` 0.5
tmid = avg tmin' tmax'
in go q pl umin umax tmin' tmid clip' (not revCurves) ++
go q pr umin umax tmid tmax' clip' (not revCurves)
else let (ql, qr) = q `splitAtParam` 0.5
umid = avg umin umax
in go ql p' umin umid tmin' tmax' clip' (not revCurves) ++
go qr p' umid umax tmin' tmax' clip' (not revCurves)
| max (umax umin) (tmax' tmin') < eps =
if revCurves
then [ (avg umin umax, avg tmin' tmax') ]
else [ (avg tmin' tmax', avg umin umax ) ]
| otherwise = go q p' umin umax tmin' tmax' clip' (not revCurves)
where
chopInterval = chopCubics p q
Just (tminChop, tmaxChop) = chopInterval
p' = section p tminChop tmaxChop
clip' = tmaxChop tminChop
tmin' = tmax * tminChop + tmin * (1 tminChop)
tmax' = tmax * tmaxChop + tmin * (1 tmaxChop)
bezierFindRoot :: OrderedField n
=> n
-> BernsteinPoly n
-> n
-> n
-> [n]
bezierFindRoot eps p tmin tmax
| isNothing chopInterval = []
| clip > 0.8 = let (p1, p2) = splitAtParam newP 0.5
tmid = tmin' + (tmax' tmin') / 2
in bezierFindRoot eps p1 tmin' tmid ++
bezierFindRoot eps p2 tmid tmax'
| tmax' tmin' < eps = [avg tmin' tmax']
| otherwise = bezierFindRoot eps newP tmin' tmax'
where
chopInterval = chopYs (bernsteinCoeffs p)
Just (tminChop, tmaxChop) = chopInterval
newP = section p tminChop tmaxChop
clip = tmaxChop tminChop
tmin' = tmax * tminChop + tmin * (1 tminChop)
tmax' = tmax * tmaxChop + tmin * (1 tmaxChop)
fatLine :: OrderedField n => FixedSegment V2 n -> (n,n)
fatLine (FCubic p0 p1 p2 p3)
= case (d1 > 0, d2 > 0) of
(True, True) -> (0, 0.75 * max d1 d2)
(False, False) -> (0.75 * min d1 d2, 0 )
(True, False) -> (4/9 * d2, 4/9 * d1 )
(False, True) -> (4/9 * d1, 4/9 * d2 )
where
d = lineDistance p0 p3
d1 = d p1; d2 = d p2
fatLine _ = (0,0)
chopYs :: OrderedField n => [n] -> Maybe (n, n)
chopYs ds = chopHull 0 0 points
where
points = zipWith mkP2 [fromIntegral i / fromIntegral n | i <- [0..n]] ds
n = length ds 1
chopCubics :: OrderedField n => FixedSegment V2 n -> FixedSegment V2 n -> Maybe (n,n)
chopCubics p q@(FCubic q0 _ _ q3)
= chopHull dmin dmax dps
where
dps = zipWith mkP2 [0, 1/3, 2/3, 1] ds
ds = p ^.. each . to d
d = lineDistance q0 q3
(dmin,dmax) = fatLine q
chopCubics _ _ = Nothing
chopHull :: OrderedField n => n -> n -> [P2 n] -> Maybe (n, n)
chopHull dmin dmax dps = do
tL <- testBelow upper $ testBetween (head upper) $ testAbove lower
tR <- testBelow (reverse upper) $ testBetween (last upper) $ testAbove (reverse lower)
Just (tL, tR)
where
(upper, lower) = sortedConvexHull dps
testBelow (p1@(P (V2 _ y1)) : p2@(P (V2 _ y2)) : ps) continue
| y1 >= dmin = continue
| y1 > y2 = Nothing
| y2 < dmin = testBelow (p2:ps) continue
| otherwise = Just $ intersectPt dmin p1 p2
testBelow _ _ = Nothing
testBetween (P (V2 x y)) continue
| y <= dmax = Just x
| otherwise = continue
testAbove (p1@(P (V2 _ y1)) : p2@(P (V2 _ y2)) : ps)
| y1 < y2 = Nothing
| y2 > dmax = testAbove (p2:ps)
| otherwise = Just $ intersectPt dmax p1 p2
testAbove _ = Nothing
bezierToBernstein :: Fractional n => FixedSegment V2 n -> (BernsteinPoly n, BernsteinPoly n)
bezierToBernstein seg =
(listToBernstein $ map (view _x) coeffs, listToBernstein $ map (view _y) coeffs)
where coeffs = toListOf each seg
lineEquation :: Floating n => P2 n -> P2 n -> (n, n, n)
lineEquation (P (V2 x1 y1)) (P (V2 x2 y2)) = (a, b, c)
where
a = a' / d
b = b' / d
c = (x1*a' + y1*b') / d
a' = y1 y2
b' = x2 x1
d = sqrt $ a'*a' + b'*b'
lineDistance :: Floating n => P2 n -> P2 n -> P2 n -> n
lineDistance p1 p2 (P (V2 x y)) = a*x + b*y + c
where (a, b, c) = lineEquation p1 p2
intersectPt :: OrderedField n => n -> P2 n -> P2 n -> n
intersectPt d (P (V2 x1 y1)) (P (V2 x2 y2)) =
x1 + (d y1) * (x2 x1) / (y2 y1)
avg :: Fractional n => n -> n -> n
avg a b = (a + b)/2
lineLine :: (Fractional n, Eq n) => Located (V2 n) -> Located (V2 n) -> Maybe (n,n)
lineLine (viewLoc -> (p,r)) (viewLoc -> (q,s))
| x1 == 0 && x2 /= 0 = Nothing
| otherwise = Just (x3 / x1, x2 / x1)
where
x1 = r × s
x2 = v × r
x3 = v × s
v = q .-. p
(×) :: Num n => V2 n -> V2 n -> n
(×) = cross2
mkLine :: InSpace v n (v n) => Point v n -> Point v n -> Located (v n)
mkLine p0 p1 = (p1 .-. p0) `at` p0
segLine :: InSpace v n (v n) => FixedSegment v n -> Located (v n)
segLine (FLinear p0 p1) = mkLine p0 p1
segLine (FCubic p0 _ _ p3) = mkLine p0 p3
inRange :: (Fractional n, Ord n) => n -> Bool
inRange x = x < (1+defEps) && x > (defEps)