module Diagrams.TwoD.Types
(
V2 (..), R1 (..), R2 (..)
, P2, T2
, r2, unr2, mkR2, r2Iso
, p2, mkP2, unp2, p2Iso
, r2PolarIso
, HasR (..)
) where
import Control.Lens (Iso', Lens', iso, _1, _2)
import Diagrams.Angle
import Diagrams.Points
import Diagrams.Core.Transform
import Diagrams.Core.V
import Linear.Metric
import Linear.V2
type P2 = Point V2
type T2 = Transformation V2
type instance V (V2 n) = V2
type instance N (V2 n) = n
r2 :: (n, n) -> V2 n
r2 = uncurry V2
unr2 :: V2 n -> (n, n)
unr2 (V2 x y) = (x, y)
mkR2 :: n -> n -> V2 n
mkR2 = V2
r2Iso :: Iso' (V2 n) (n, n)
r2Iso = iso unr2 r2
p2 :: (n, n) -> P2 n
p2 = P . uncurry V2
unp2 :: P2 n -> (n,n)
unp2 (P (V2 x y)) = (x,y)
mkP2 :: n -> n -> P2 n
mkP2 x y = P (V2 x y)
p2Iso :: Iso' (Point V2 n) (n, n)
p2Iso = iso unp2 p2
instance Transformable (V2 n) where
transform = apply
r2PolarIso :: RealFloat n => Iso' (V2 n) (n, Angle n)
r2PolarIso = iso (\v@(V2 x y) -> (norm v, atan2A y x))
(\(r,θ) -> V2 (r * cosA θ) (r * sinA θ))
class HasR t where
_r :: RealFloat n => Lens' (t n) n
instance HasR v => HasR (Point v) where
_r = lensP . _r
instance HasR V2 where
_r = r2PolarIso . _1
instance HasTheta V2 where
_theta = r2PolarIso . _2