diagrams-lib-1.4: Embedded domain-specific language for declarative graphics

Copyright(c) 2011 diagrams-lib team (see LICENSE)
LicenseBSD-style (see LICENSE)
Maintainerdiagrams-discuss@googlegroups.com
Safe HaskellNone
LanguageHaskell2010

Diagrams.ThreeD.Types

Contents

Description

Basic types for three-dimensional Euclidean space.

Synopsis

3D Euclidean space

r3 :: (n, n, n) -> V3 n Source #

Construct a 3D vector from a triple of components.

unr3 :: V3 n -> (n, n, n) Source #

Convert a 3D vector back into a triple of components.

mkR3 :: n -> n -> n -> V3 n Source #

Curried version of r3.

p3 :: (n, n, n) -> P3 n Source #

Construct a 3D point from a triple of coordinates.

unp3 :: P3 n -> (n, n, n) Source #

Convert a 3D point back into a triple of coordinates.

mkP3 :: n -> n -> n -> P3 n Source #

Curried version of r3.

r3Iso :: Iso' (V3 n) (n, n, n) Source #

p3Iso :: Iso' (P3 n) (n, n, n) Source #

project :: (Metric v, Fractional a) => v a -> v a -> v a #

project u v computes the projection of v onto u.

data V3 a :: * -> * #

A 3-dimensional vector

Constructors

V3 ~a ~a ~a 

Instances

Monad V3 

Methods

(>>=) :: V3 a -> (a -> V3 b) -> V3 b #

(>>) :: V3 a -> V3 b -> V3 b #

return :: a -> V3 a #

fail :: String -> V3 a #

Functor V3 

Methods

fmap :: (a -> b) -> V3 a -> V3 b #

(<$) :: a -> V3 b -> V3 a #

MonadFix V3 

Methods

mfix :: (a -> V3 a) -> V3 a #

Applicative V3 

Methods

pure :: a -> V3 a #

(<*>) :: V3 (a -> b) -> V3 a -> V3 b #

(*>) :: V3 a -> V3 b -> V3 b #

(<*) :: V3 a -> V3 b -> V3 a #

Foldable V3 

Methods

fold :: Monoid m => V3 m -> m #

foldMap :: Monoid m => (a -> m) -> V3 a -> m #

foldr :: (a -> b -> b) -> b -> V3 a -> b #

foldr' :: (a -> b -> b) -> b -> V3 a -> b #

foldl :: (b -> a -> b) -> b -> V3 a -> b #

foldl' :: (b -> a -> b) -> b -> V3 a -> b #

foldr1 :: (a -> a -> a) -> V3 a -> a #

foldl1 :: (a -> a -> a) -> V3 a -> a #

toList :: V3 a -> [a] #

null :: V3 a -> Bool #

length :: V3 a -> Int #

elem :: Eq a => a -> V3 a -> Bool #

maximum :: Ord a => V3 a -> a #

minimum :: Ord a => V3 a -> a #

sum :: Num a => V3 a -> a #

product :: Num a => V3 a -> a #

Traversable V3 

Methods

traverse :: Applicative f => (a -> f b) -> V3 a -> f (V3 b) #

sequenceA :: Applicative f => V3 (f a) -> f (V3 a) #

mapM :: Monad m => (a -> m b) -> V3 a -> m (V3 b) #

sequence :: Monad m => V3 (m a) -> m (V3 a) #

Generic1 V3 

Associated Types

type Rep1 (V3 :: * -> *) :: * -> * #

Methods

from1 :: V3 a -> Rep1 V3 a #

to1 :: Rep1 V3 a -> V3 a #

Apply V3 

Methods

(<.>) :: V3 (a -> b) -> V3 a -> V3 b #

(.>) :: V3 a -> V3 b -> V3 b #

(<.) :: V3 a -> V3 b -> V3 a #

Distributive V3 

Methods

distribute :: Functor f => f (V3 a) -> V3 (f a) #

collect :: Functor f => (a -> V3 b) -> f a -> V3 (f b) #

distributeM :: Monad m => m (V3 a) -> V3 (m a) #

collectM :: Monad m => (a -> V3 b) -> m a -> V3 (m b) #

Representable V3 

Associated Types

type Rep (V3 :: * -> *) :: * #

Methods

tabulate :: (Rep V3 -> a) -> V3 a #

index :: V3 a -> Rep V3 -> a #

Eq1 V3 

Methods

liftEq :: (a -> b -> Bool) -> V3 a -> V3 b -> Bool #

Ord1 V3 

Methods

liftCompare :: (a -> b -> Ordering) -> V3 a -> V3 b -> Ordering #

Read1 V3 

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V3 a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [V3 a] #

Show1 V3 

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V3 a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [V3 a] -> ShowS #

MonadZip V3 

Methods

mzip :: V3 a -> V3 b -> V3 (a, b) #

mzipWith :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

munzip :: V3 (a, b) -> (V3 a, V3 b) #

Serial1 V3 

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V3 a -> m () #

deserializeWith :: MonadGet m => m a -> m (V3 a) #

Additive V3 

Methods

zero :: Num a => V3 a #

(^+^) :: Num a => V3 a -> V3 a -> V3 a #

(^-^) :: Num a => V3 a -> V3 a -> V3 a #

lerp :: Num a => a -> V3 a -> V3 a -> V3 a #

liftU2 :: (a -> a -> a) -> V3 a -> V3 a -> V3 a #

liftI2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

Traversable1 V3 

Methods

traverse1 :: Apply f => (a -> f b) -> V3 a -> f (V3 b) #

sequence1 :: Apply f => V3 (f b) -> f (V3 b) #

Affine V3 

Associated Types

type Diff (V3 :: * -> *) :: * -> * #

Methods

(.-.) :: Num a => V3 a -> V3 a -> Diff V3 a #

(.+^) :: Num a => V3 a -> Diff V3 a -> V3 a #

(.-^) :: Num a => V3 a -> Diff V3 a -> V3 a #

R3 V3 

Methods

_z :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V3 a -> f (V3 a) #

R2 V3 

Methods

_y :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> V3 a -> f (V3 a) #

R1 V3 

Methods

_x :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

Metric V3 

Methods

dot :: Num a => V3 a -> V3 a -> a #

quadrance :: Num a => V3 a -> a #

qd :: Num a => V3 a -> V3 a -> a #

distance :: Floating a => V3 a -> V3 a -> a #

norm :: Floating a => V3 a -> a #

signorm :: Floating a => V3 a -> V3 a #

Bind V3 

Methods

(>>-) :: V3 a -> (a -> V3 b) -> V3 b #

join :: V3 (V3 a) -> V3 a #

Foldable1 V3 

Methods

fold1 :: Semigroup m => V3 m -> m #

foldMap1 :: Semigroup m => (a -> m) -> V3 a -> m #

Unbox a => Vector Vector (V3 a) 

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (V3 a) -> m (Vector (V3 a)) #

basicUnsafeThaw :: PrimMonad m => Vector (V3 a) -> m (Mutable Vector (PrimState m) (V3 a)) #

basicLength :: Vector (V3 a) -> Int #

basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a) #

basicUnsafeIndexM :: Monad m => Vector (V3 a) -> Int -> m (V3 a) #

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (V3 a) -> Vector (V3 a) -> m () #

elemseq :: Vector (V3 a) -> V3 a -> b -> b #

Unbox a => MVector MVector (V3 a) 

Methods

basicLength :: MVector s (V3 a) -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a) #

basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool #

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (V3 a)) #

basicInitialize :: PrimMonad m => MVector (PrimState m) (V3 a) -> m () #

basicUnsafeReplicate :: PrimMonad m => Int -> V3 a -> m (MVector (PrimState m) (V3 a)) #

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> m (V3 a) #

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> V3 a -> m () #

basicClear :: PrimMonad m => MVector (PrimState m) (V3 a) -> m () #

basicSet :: PrimMonad m => MVector (PrimState m) (V3 a) -> V3 a -> m () #

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (V3 a) -> MVector (PrimState m) (V3 a) -> m () #

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (V3 a) -> MVector (PrimState m) (V3 a) -> m () #

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> m (MVector (PrimState m) (V3 a)) #

Bounded a => Bounded (V3 a) 

Methods

minBound :: V3 a #

maxBound :: V3 a #

Eq a => Eq (V3 a) 

Methods

(==) :: V3 a -> V3 a -> Bool #

(/=) :: V3 a -> V3 a -> Bool #

Floating a => Floating (V3 a) 

Methods

pi :: V3 a #

exp :: V3 a -> V3 a #

log :: V3 a -> V3 a #

sqrt :: V3 a -> V3 a #

(**) :: V3 a -> V3 a -> V3 a #

logBase :: V3 a -> V3 a -> V3 a #

sin :: V3 a -> V3 a #

cos :: V3 a -> V3 a #

tan :: V3 a -> V3 a #

asin :: V3 a -> V3 a #

acos :: V3 a -> V3 a #

atan :: V3 a -> V3 a #

sinh :: V3 a -> V3 a #

cosh :: V3 a -> V3 a #

tanh :: V3 a -> V3 a #

asinh :: V3 a -> V3 a #

acosh :: V3 a -> V3 a #

atanh :: V3 a -> V3 a #

log1p :: V3 a -> V3 a #

expm1 :: V3 a -> V3 a #

log1pexp :: V3 a -> V3 a #

log1mexp :: V3 a -> V3 a #

Fractional a => Fractional (V3 a) 

Methods

(/) :: V3 a -> V3 a -> V3 a #

recip :: V3 a -> V3 a #

fromRational :: Rational -> V3 a #

Data a => Data (V3 a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V3 a -> c (V3 a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V3 a) #

toConstr :: V3 a -> Constr #

dataTypeOf :: V3 a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (V3 a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V3 a)) #

gmapT :: (forall b. Data b => b -> b) -> V3 a -> V3 a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQ :: (forall d. Data d => d -> u) -> V3 a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V3 a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

Num a => Num (V3 a) 

Methods

(+) :: V3 a -> V3 a -> V3 a #

(-) :: V3 a -> V3 a -> V3 a #

(*) :: V3 a -> V3 a -> V3 a #

negate :: V3 a -> V3 a #

abs :: V3 a -> V3 a #

signum :: V3 a -> V3 a #

fromInteger :: Integer -> V3 a #

Ord a => Ord (V3 a) 

Methods

compare :: V3 a -> V3 a -> Ordering #

(<) :: V3 a -> V3 a -> Bool #

(<=) :: V3 a -> V3 a -> Bool #

(>) :: V3 a -> V3 a -> Bool #

(>=) :: V3 a -> V3 a -> Bool #

max :: V3 a -> V3 a -> V3 a #

min :: V3 a -> V3 a -> V3 a #

Read a => Read (V3 a) 
Show a => Show (V3 a) 

Methods

showsPrec :: Int -> V3 a -> ShowS #

show :: V3 a -> String #

showList :: [V3 a] -> ShowS #

Ix a => Ix (V3 a) 

Methods

range :: (V3 a, V3 a) -> [V3 a] #

index :: (V3 a, V3 a) -> V3 a -> Int #

unsafeIndex :: (V3 a, V3 a) -> V3 a -> Int

inRange :: (V3 a, V3 a) -> V3 a -> Bool #

rangeSize :: (V3 a, V3 a) -> Int #

unsafeRangeSize :: (V3 a, V3 a) -> Int

Generic (V3 a) 

Associated Types

type Rep (V3 a) :: * -> * #

Methods

from :: V3 a -> Rep (V3 a) x #

to :: Rep (V3 a) x -> V3 a #

Storable a => Storable (V3 a) 

Methods

sizeOf :: V3 a -> Int #

alignment :: V3 a -> Int #

peekElemOff :: Ptr (V3 a) -> Int -> IO (V3 a) #

pokeElemOff :: Ptr (V3 a) -> Int -> V3 a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (V3 a) #

pokeByteOff :: Ptr b -> Int -> V3 a -> IO () #

peek :: Ptr (V3 a) -> IO (V3 a) #

poke :: Ptr (V3 a) -> V3 a -> IO () #

Binary a => Binary (V3 a) 

Methods

put :: V3 a -> Put #

get :: Get (V3 a) #

putList :: [V3 a] -> Put #

Serial a => Serial (V3 a) 

Methods

serialize :: MonadPut m => V3 a -> m () #

deserialize :: MonadGet m => m (V3 a) #

Serialize a => Serialize (V3 a) 

Methods

put :: Putter (V3 a) #

get :: Get (V3 a) #

NFData a => NFData (V3 a) 

Methods

rnf :: V3 a -> () #

Hashable a => Hashable (V3 a) 

Methods

hashWithSalt :: Int -> V3 a -> Int #

hash :: V3 a -> Int #

Unbox a => Unbox (V3 a) 
Ixed (V3 a) 

Methods

ix :: Index (V3 a) -> Traversal' (V3 a) (IxValue (V3 a)) #

Epsilon a => Epsilon (V3 a) 

Methods

nearZero :: V3 a -> Bool #

Coordinates (V3 n) Source # 

Associated Types

type FinalCoord (V3 n) :: * Source #

type PrevDim (V3 n) :: * Source #

type Decomposition (V3 n) :: * Source #

Methods

(^&) :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n Source #

pr :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n Source #

coords :: V3 n -> Decomposition (V3 n) Source #

FunctorWithIndex (E V3) V3 

Methods

imap :: (E V3 -> a -> b) -> V3 a -> V3 b #

imapped :: (Indexable (E V3) p, Settable f) => p a (f b) -> V3 a -> f (V3 b) #

FoldableWithIndex (E V3) V3 

Methods

ifoldMap :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifolded :: (Indexable (E V3) p, Contravariant f, Applicative f) => p a (f a) -> V3 a -> f (V3 a) #

ifoldr :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

ifoldr' :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl' :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

TraversableWithIndex (E V3) V3 

Methods

itraverse :: Applicative f => (E V3 -> a -> f b) -> V3 a -> f (V3 b) #

itraversed :: (Indexable (E V3) p, Applicative f) => p a (f b) -> V3 a -> f (V3 b) #

Each (V3 a) (V3 b) a b 

Methods

each :: Traversal (V3 a) (V3 b) a b #

TypeableFloat n => Traced (BoundingBox V3 n) # 

Methods

getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) #

type Rep1 V3 
type Rep V3 
type Rep V3 = E V3
type Diff V3 
type Diff V3 = V3
data MVector s (V3 a) 
data MVector s (V3 a) = MV_V3 ~Int ~(MVector s a)
type Rep (V3 a) 
type V (V3 n) # 
type V (V3 n) = V3
type N (V3 n) # 
type N (V3 n) = n
data Vector (V3 a) 
data Vector (V3 a) = V_V3 ~Int ~(Vector a)
type Index (V3 a) 
type Index (V3 a) = E V3
type IxValue (V3 a) 
type IxValue (V3 a) = a
type FinalCoord (V3 n) Source # 
type FinalCoord (V3 n) = n
type PrevDim (V3 n) Source # 
type PrevDim (V3 n) = V2 n
type Decomposition (V3 n) Source # 
type Decomposition (V3 n) = (:&) ((:&) n n) n

type P3 = Point V3 Source #

class R1 t where #

A space that has at least 1 basis vector _x.

Minimal complete definition

Nothing

Instances

R1 Identity 

Methods

_x :: Functor f => (a -> f a) -> Identity a -> f (Identity a) #

R1 V4 

Methods

_x :: Functor f => (a -> f a) -> V4 a -> f (V4 a) #

R1 V3 

Methods

_x :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

R1 V2 

Methods

_x :: Functor f => (a -> f a) -> V2 a -> f (V2 a) #

R1 V1 

Methods

_x :: Functor f => (a -> f a) -> V1 a -> f (V1 a) #

R1 f => R1 (Point f) 

Methods

_x :: Functor f => (a -> f a) -> Point f a -> f (Point f a) #

class R1 t => R2 t where #

A space that distinguishes 2 orthogonal basis vectors _x and _y, but may have more.

Minimal complete definition

Nothing

Instances

R2 V4 

Methods

_y :: Functor f => (a -> f a) -> V4 a -> f (V4 a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> V4 a -> f (V4 a) #

R2 V3 

Methods

_y :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> V3 a -> f (V3 a) #

R2 V2 

Methods

_y :: Functor f => (a -> f a) -> V2 a -> f (V2 a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> V2 a -> f (V2 a) #

R2 f => R2 (Point f) 

Methods

_y :: Functor f => (a -> f a) -> Point f a -> f (Point f a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> Point f a -> f (Point f a) #

class R2 t => R3 t where #

A space that distinguishes 3 orthogonal basis vectors: _x, _y, and _z. (It may have more)

Minimal complete definition

Nothing

Instances

R3 V4 

Methods

_z :: Functor f => (a -> f a) -> V4 a -> f (V4 a) #

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V4 a -> f (V4 a) #

R3 V3 

Methods

_z :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V3 a -> f (V3 a) #

R3 f => R3 (Point f) 

Methods

_z :: Functor f => (a -> f a) -> Point f a -> f (Point f a) #

_xyz :: Functor f => (V3 a -> f (V3 a)) -> Point f a -> f (Point f a) #

Orphan instances

HasPhi V3 Source # 

Methods

_phi :: RealFloat n => Lens' (V3 n) (Angle n) Source #

HasTheta V3 Source # 

Methods

_theta :: RealFloat n => Lens' (V3 n) (Angle n) Source #

HasR V3 Source # 

Methods

_r :: RealFloat n => Lens' (V3 n) n Source #

Transformable (V3 n) Source # 

Methods

transform :: Transformation (V (V3 n)) (N (V3 n)) -> V3 n -> V3 n #